mt-Nd2a Modifies Resistance Against Autoimmune Type 1 Diabetes in NOD Mice at the Level of the Pancreatic β-Cell

نویسندگان

  • Jing Chen
  • Aaron M. Gusdon
  • Jon Piganelli
  • Edward H. Leiter
  • Clayton E. Mathews
چکیده

OBJECTIVE To investigate whether a single nucleotide polymorphism (SNP) in the mitochondrial gene for NADH dehydrogenase 2 (mt-Nd2) can modulate susceptibility to type 1 diabetes in NOD mice. RESEARCH DESIGN AND METHODS NOD/ShiLtJ mice conplastic for the alloxan resistant (ALR)/Lt-derived mt-Nd2(a) allele (NOD.mt(ALR)) were created and compared with standard NOD (carrying the mt-Nd2(c) allele) for susceptibility to spontaneous autoimmune diabetes, or to diabetes elicited by reciprocal adoptive splenic leukocyte transfers, as well as by adoptive transfer of diabetogenic T-cell clones. β-Cell lines derived from either the NOD (NIT-1) or the NOD.mt(ALR) (NIT-4) were also created to compare their susceptibility to cytolysis by diabetogenic CD8(+) T-cells in vitro. RESULTS NOD mice differing at this single SNP developed spontaneous or adoptively transferred diabetes at comparable rates and percentages. However, conplastic mice with the mt-Nd2(a) allele exhibited resistance to transfer of diabetes by the CD4(+) T-cell clone BDC 2.5 as well as the CD8(+) AI4 T-cell clones from T-cell receptor transgenic animals. NIT-4 cells with mt-Nd2(a) were also more resistant to AI4-mediated destruction in vitro than NIT-1 cells. CONCLUSIONS Conplastic introduction into NOD mice of a variant mt-Nd2 allele alone was not sufficient to prevent spontaneous autoimmune diabetes. Subtle nonhematopoietic type 1 diabetes resistance was observed during adoptive transfer experiments with T-cell clones. This study confirms that genetic polymorphisms in mitochondria can modulate β-cell sensitivity to autoimmune T-cell effectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

پلی‌مورفیسم ژن IL18 در بیماران دیابتی نوع I: یک مطالعه مورد- شاهدی

Background: Type I diabetes is an autoimmune disease characterized by T-cell Mediated destruction of pancreatic β-cells. A variety of environmental, genetic and Immunologic factors are involved in the development of the disease. IL18 is a cytokine secreted by macrophage and monocytes and play an important role in the pathogenesis of diabetes Type I through inducing IFN-γ production. It is shown...

متن کامل

درمان موش‌های دیابتیک نوع 1 با آل- ترانس رتینوئیک اسید از طریق مهار سایتوکاین‌های پیش التهابی

    Background & Aims: Type 1 diabetes is an autoimmune condition associated with the T-cell–mediated destruction of Pancreatic β cells. Vitamin A (retinol) and its metabolites (such as all-trans retinoic acid (ATRA)) have a variety of biological activities including immunomodulatory action in a number of inflammatory and autoimmune conditions. The purpose of this study was to investigate the e...

متن کامل

Cyclin D3 promotes pancreatic β-cell fitness and viability in a cell cycle-independent manner and is targeted in autoimmune diabetes.

Type 1 diabetes is an autoimmune condition caused by the lymphocyte-mediated destruction of the insulin-producing β cells in pancreatic islets. We aimed to identify final molecular entities targeted by the autoimmune assault on pancreatic β cells that are causally related to β cell viability. Here, we show that cyclin D3 is targeted by the autoimmune attack on pancreatic β cells in vivo. Cyclin...

متن کامل

Impact of Magnesium Deficiency on Pancreatic β-Cell Function in Type 2 Diabetic Nigerians

Objective: Pancreatic b-cell dysfunction is described to be present at the diagnosis of type 2 diabetes mellitus (T2DM) and progressively deteriorated with disease duration. However, its progression is variable and potentially influenced by several factors. The Magnesium (Mg) deficiency mediates insulin resistance but reports regarding its role in pancreatic β-cell dysfunction are scarce and co...

متن کامل

Exercise Training but not Curcumin Supplementation Decreases Immune Cell Infiltration in the Pancreatic Islets of a Genetically Susceptible Model of Type 1 Diabetes

BACKGROUND The main mechanism involved in the pathogenesis of autoimmunity is an uncontrolled inflammatory response against self-antigens. Therefore, anti-inflammatory factors, such as the intake of bioactive compounds and a physically active lifestyle, may decrease or cease the development of autoimmune diseases. Type 1 diabetes (T1D) is an autoimmune disease characterized by pancreatic β cell...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 60  شماره 

صفحات  -

تاریخ انتشار 2011